
Automatically tuned libraries for
native-dimension tensor transpose and

contraction algorithms

Jeff Hammond

June 1, 2011

Abstract

1 Introduction

Many numerical algorithms, particularly those of quantum many-body the-
ory, rely heavily upon procedures called tensor contractions. Tensor contrac-
tions (TC) are the multi-dimensional generalization of matrix multiplication
(MM). Whereas in MM, one has only a single internal (contracted) index
and the two external indices of the matrix,

Ci
j =

∑
k

Ai
k Bk

j , (1)

a tensor contraction may have an arbitary number of both. One simple
example from quantum chemistry is

Ra,b
i,j =

∑
c,d

V a,b
c,d T c,d

i,j . (2)

While Eqn. 2 is isomorphic to MM upon fusion of the three pairs of indices,
other similar contractions with permuted indices are not. An example of a
TC that cannot be performed with MM alone is

Ra,b
i,j =

∑
k,c

Ṽ k,b
c,j T a,c

i,k , (3)

1



presuming that we are utilizing the straightforward layout of these objects
in memory. That the objects R and T in Eqns. 2 and 3 are the same, the
best one can do is to choose a layout which is optimal for the most expensive
TC and use a sub-optimal ordering for the other. Alternatively, one can
change the memory layout sub-optimally-ordered tensors via a transpose-like
operation. A much more complex approach is to use Morton-ordering [1] (also
known as Z-ordering), or more generally, hierarchical tiling [2], to improve
the performance of all tensor contractions, but then it is not possible to use
existing implementations of MM, such as BLAS.

The complexity introduced by the transposition of indices in TCs presents
a significant challenge to programmers. If one hand-codes procedures which
are not MM, then a significant performance loss is incured, as MM kernels
are perhaps the most optimized in all numerical computation. Alternatively,
one can retain the use of fast MM kernels by realigning the memory layout
such that operations like Eqn. 3 can be performed with MM.

The transformation of Eqn. 3 to a form which is consistent with matrix
multiplication is as follows:

T a,c
i,k → T1(i, k, a, c) (4)

Ṽ k,b
c,j → V 1(c, j, k, b) (5)

Ra,b
i,j → R1(i, j, a, b) (6)

T2(i, a, k, c) = T1(i, k, a, c) (7)

V 2((k, b), (c, j)) = V 1((c, j), (k, b)) (8)

V 3(k, c, b, j) = V 2(k, b, c, j) (9)

R2((i, a), (b, j)) = SUM[(k, c)] V 3((k, c), (b, j)) ∗ T2((i, a), (k, c))(10)

R1(i, j, a, b) = R2(i, a, b, j) (11)

where the matrix dimensions used in the matrix transpose and multiplication
calls are denoted with parentheses. Row-major ordering (the last index is
stride-1) is presumed throughout. Equations 7, 9 and 11 correspond to tensor
transpose (TT) operations. Since matrix transpose is not a standard BLAS
operation, Eqn. 10 will be treated as another TT. However, when a vendor
BLAS library (i.e. IBM’s ESSL) contains a matrix transpose procedure, it
should be used instead if the performance justifies it.

For a rank-n tensor, there are n! possible permutations of the indices,
and writing fast code for each of these procedures by hand is impractical for

2



n > 4. The automatic generation of code for these procedures is the subject
of this chapter.

2 Background

The target application for this project was the coupled-cluster codes within
TCE module of the quantum chemistry package NWChem [3]. Because most
of the code within the TCE module was written by a code generator, it
employs a simple structure which is easily modified. The TCE module also
has few, if any, manually optimized procedures and thus suffers in perfor-
mance with respect to the best hand-written packages. In the particular
case of TT, four subroutine calls, tce sortN (N=2,4,6,8), were used to per-
form every associated array permutation. Nearly identical sort-acculuate
calls (tce sortaccN, N=2,4,6,8) have use the same code except with “+=”
instead of “=”. Replacing these procedure with faster ones would result in
increased performance throughout the code.

Is it not unreasonable to question the utility of optimizing permutations
at all. The permutation of a n-d array requires Nn floating-point operations
(flops), where N is the rank of each dimension, whereas contracting an n-d
array with an m-d array over k indices requires Nm+n−k flops. However, the
number of memory operations (mops) required to permute a 4-d array or
contract two 4-d arrays over 2 indices is C·N4 where C is 2 for permutation
(1 read, 1 write) and 3 for contraction (2 reads, 1 write). On modern pro-
cessors, mops are so expensive that some have said that flops can almost be
ignored. MM achieves a large percentage of machine peak by obscuring mem-
ory latency through data reuse, which is possible because flops/mops is large.
Since the performance of permutations is memory-bandwidth-limited, it is
unreasonable to expect a large percentage of peak performance. At the same
time, improper implementation of these procedures can be extraordinarily
expensive. Unlike MM, the flow of data during permutation is necessarily
not optimal since at least half of the mops will not be stride-1.

If we assume flops are free and that performance is determined by the
number and type of mops occuring, then permutation, not MM will be the
more expensive procedure of the two. Since theoretical analyses are rarely
quantitative, the relative cost of the two procedures has been measured using
profiling techniques. Both the GNU profiler gprof [4] and TAU [5] were used
to profile the code to ensure correct measurements. TAU profiling results are

3



not reported as they do not differ significantly from those of gprof.

3 Results

All results are for a single water molecular at the equilibrium geometry.
Calculations were performed without point-group symmetry using spherical
angular functions. The tile size for the virtual orbitals (VO) was no greater
than 32. For the cc-pVDZ, cc-pVTZ and cc-pVQZ basis sets, there were
2, 4 and 8 virtual orbital tiles with average dimension 19, 26.5 and 27.5,
respectively. Using a larger tile size favors dgemm performance, while smaller
favors tce sortN.

3.1 Profiling of CCSD within NWChem

First it was established empirically that the tensor transpose operation is
a significant portion of the was time, as predicted by the aforementioned
theoretical analysis. In Table 1, the results of profiling are given for com-
puting the CCSD ground-state energy. When computing the CCSD energy,
the coupled-cluster equations (described in previous chapters) are solved it-
eratively. The energy evaluation two orders less expensive than the iterative
procedure and does not contribute significantly to the computational cost.
The data given in Table 1 shows that MM and transpose both contribute
significantly to wall time. However, the fraction of the wall time devoted to
MM grows with the basis set, so it is not entirely clear that the optimality of
the transpose will matter for larger systems. It should be noted that the MM
implementation used was from NETLIB. A high-performance BLAS library
such as GotoBLAS [6] or ATLAS [7] would greatly decrease the time spent
on MM operations.

As should be clear from previous chapters, computating the ground-state
energy is but one of many possible tasks for a coupled-cluster code. In
Table 2, profiling information is given for the evaluation of all steps necessary
to compute the hyperpolarizability using the method described in Chapter 8.
The number of difficult transposes required for the solution of the Λ(0), T (1)

and Λ(1) equations is significantly larger than required just for T (0), which is
affirmed by the data. The relative amount of time spend in the transpose
operations is approximately 50% greater than that spent in MM for the cc-
pVQZ basis set, and while the overall trend in the basis set is the same as

4



Table 1: Profile (gprof) of the NWChem TCE module CCSD code for com-
puting the ground-state energy.

Matrix multiplication Tensor transpose
dgemm tce sort4 & tce sortacc4

Basis Time (s) % of Total Time (s) % of Total
cc-pVDZ 0.40 27.59 1.49 29.65
cc-pVTZ 8.70 30.87 34.15 37.22
cc-pVQZ 154.46 38.54 108.47 27.07

Table 2: Profile (gprof) of the NWChem TCE module CCSD code for com-
puting the hyperpolarizability.

dgemm tce sort4 & tce sortacc4
Basis Time (s) % of Total Time (s) % of Total

cc-pVDZ 5.78 28.18 11.08 54.03
cc-pVTZ 111.10 28.44 192.45 49.26
cc-pVQZ 1389.05 29.16 2137.17 44.87

Table 1, rate of which MM increases and transpose decrease is much less.

3.2 Autotuning transpose kernels

It was determined that the primary reason transpose operations are slow is
that they access memory in a suboptimal way, that is, strided access rather
than sequential (stride-1) access. While it is not possible to eliminate strided
access, it is possible to minimize the cost of strided access by rearranging
the loops such that the stride distance is minimal. If the stride distance is
small enough that cache reuse occurs, a significant performance increase will
result.

While it is possible to determine optimal loop ordering using mathemat-
ical analysis, a much cruder approach — exhaustive sampling — is sufficient
in this case. In addition, sampling includes all possible hardware-specific
factors which may not be available for integration into a performance mod-

5



eling used in the analytic approach. To determine the optimal loop-ordering
for the 4-d transpose problem, a code-generator was developed which would
produce source code for all possible implementations (24) for each of the
24 transposes, for a total of 576 cases. Source code was generated in both
Fortran 77 and ANSI C since the former is known to be more amenable to
compiler optimization, while the latter allows a more complete set of com-
piler pragmas and is the language of choice of people who would further
hand-tune these kernels. A master program was instrumented to compile
the source code into binary form using a variety of possible compiler flags to
determine the effect of available optimization options. Some of the optimiza-
tions sampled for the Intel compilers were loop-unrolling, auto-vectorization
and auto-parallelization; compiler pragmas were also explored as a means to
explicitly control unrolling and vectorization. The master program built a
self-contained binary for each possible transpose which, when executed, per-
formed the timing and printed a complete table of results then identified the
optimal loop-ordering. It also prints the compiler flags which were used to
generate the code to prevent data rot.

Table 3 shows the best improvement obtained with the automatically-
generated code as compared to the original implementation within NWChem
by So Hirata. Four cases were considered: regular 4-d arrays of rank 20, 32
and 60 plus an irregular array. The speed-up for the rank 20 case is sig-
nificantly better than the others because both the input and output array
(1,250 KB each) fit into cache on the machine tested (Intel Core2Duo, 4 MB
L3 cache). For larger dimensions, the arrays do not fit into cache. This
clearly indicates that L3 cache-blocking will significantly improve the trans-
pose performance, although finding the optimal code with that additional
level of complexity becomes harder. Instead of performing an exhaustive
search over just the space of loop-orderings or compiler options, an exhaus-
tive search for the cache-blocking case involves exploring the tensor product
space of blocking sizes and loop-orderings for each level of blocking. The di-
mensionality here is too large to consider by brute force, and a space-pruning
algorithm must be employed to make the solution achievable in a reasonable
amount of time.

In addition to the 4-d case, exhaustive search was used to find the best
implementation of the subset of 6-d transpose-accumulate operations used
in CCSD(T). Because of memory constraints imposed by the use triple-
excitation amplitudes, dimensions of the arrays are much smaller. Due
to the smaller stride length, cache-blocking is less important and the per-

6



Table 3: Best improvement relative to the original implementation by the
ANSI C automatically-generated implementation of the transpose opera-
tions for a 4-d array. The Intel 10.1 compiler flags used were -O3 -xT

-march=core2 -mtune=core2 -funroll-loops -align.

Transpose 204 324 604 irregular
1234 7.250 2.500 1.946 3.769
1243 7.667 2.345 2.257 2.733
1324 5.000 1.828 1.861 2.667
1342 5.250 2.379 2.173 2.923
1423 7.000 2.448 2.272 2.929
1432 5.250 2.000 2.372 3.154
2134 5.250 2.000 1.967 2.583
2143 8.334 2.586 2.108 2.786
2314 5.250 2.000 2.028 2.583
2341 5.000 2.267 2.179 3.000
2413 7.000 2.571 2.390 2.857
2431 5.000 1.889 2.756 3.385
3124 5.250 1.862 1.966 2.538
3142 5.000 3.233 2.216 3.000
3214 5.250 2.143 2.104 2.833
3241 7.000 1.971 2.219 2.571
3412 5.000 1.838 2.208 2.692
3421 6.334 1.976 2.281 2.429
4123 6.333 2.655 2.228 2.875
4132 4.750 1.944 2.202 3.000
4213 5.250 2.821 2.326 2.786
4231 5.250 2.195 2.299 3.077
4312 4.750 1.973 2.120 3.308
4321 4.500 1.767 2.163 3.077

irregular = 41× 17× 24× 39

7



formance improvement realized just by finding the optimal loop-ordering
(among 6! = 720 possibilities) is quite good. The performance improvement
realized in preliminary attempts ranges from a factor of 3 to a factor of 12.
This is the subject of ongoing research.

4 Conclusions

Tensor operations, which compose the overwhelming majority of quantum
chemistry codes, require optimal implementations to take advantage of high-
performance computers. It was demonstrated that tensors transpose is a
significant contribution to the wall time for coupled-cluster calculations and
that a very simple approach decrease the time devoted to these operations
by a factor of two. The successful approach employed here did not employ
cache-blocking or many other possible optimization techniques which will
further improve the performance

Ultimately, this project demonstrates that the artificial seperation of
transpose and MM in the implementation of tensor contractions is wholly
inappropriate. The original motivation for it was to take advantage of vendor-
optimized BLAS libraries, but developments in autotuning over the past 10
years clearly indicate that it is possible to generate tensor contraction kernels
directly. The advantage is not only with respect to performance, but also
in terms of mathematical elegance. The many-body formalism of coupled-
cluster theory is multidimensional and flattening the data structures used in
such codes into matrices just to use BLAS should not be tolerated.

References

[1] G. M. Morton, “A Computer Oriented Geodetic Data Base and a New
Technique in File Sequencing,” IBM technical report (1966).

[2] L. Carter, J. Ferrante, S. Flynn Hummel, B. Alpern and K.S. Gatlin,
UCSD Tech Report CS96-508, November 1996; L. Carter, J. Ferrante
and S. Flynn Hummel, Int. Par. Proc. Symp., April 1995; L. Carter,
J. Ferrante and S. Flynn Hummel, SIAM Conf. on Par. Proc. for Sci.
Comp., February 1995.

8



[3] E. J. Bylaska, W. A. de Jong, N. Govind, K. Kowalski, T. P. Straatsma,
M. Valiev, D. Wang, E. Apra, T. L. Windus, J. Hammond, J.
Autschbach, P. Nichols, S. Hirata, M. T. Hackler, Y. Zhao, P.-D. Fan,
R. J. Harrison, M. Dupuis, D. M. A. Smith, J. Nieplocha, V. Tippa-
raju, M. Krishnan, A. Vazquez-Mayagoitia, Q. Wu, T. Van Voorhis,
A. A. Auer, M. Nooijen, L. D. Crosby, E. Brown, G. Cisneros, G. I.
Fann, H. Fruchtl, J. Garza, K. Hirao, R. Kendall, J. A. Nichols, K. Tse-
mekhman, K. Wolinski, J. Anchell, D. Bernholdt, P. Borowski, T. Clark,
D. Clerc, H. Dachsel, M. Deegan, K. Dyall, D. Elwood, E. Glendening,
M. Gutowski, A. Hess, J. Jaffe, B. Johnson, J. Ju, R. Kobayashi, R.
Kutteh, Z. Lin, R. Littlefield, X. Long, B. Meng, T. Nakajima, S. Niu,
L. Pollack, M. Rosing, G. Sandrone, M. Stave, H. Taylor, G. Thomas,
J. van Lenthe, A. Wong and Z. Zhang. “NWChem, A Computational
Chemistry Package for Parallel Computers, Version 5.1.1” (2007), Pa-
cific Northwest National Laboratory, Richland, Washington 99352-0999,
USA. A modified version.

[4] gprof. Jay Fenlason and Richard Stallman. Copyright 1988, 92, 97, 98,
99, 2000, 2003 Free Software Foundation, Inc.

[5] TAU: The TAU Parallel Performance System. S. Shende and A. D.
Malony. International Journal of High Performance Computing Appli-
cations, Volume 20 Number 2 Summer 2006. Pages 287-331.

[6] http://www.tacc.utexas.edu/resources/software/

[7] http://math-atlas.sourceforge.net/

9


